Soil Carbon Sequestration from Conservation Agricultural Systems in Georgia

Alan J.
Franzluebbers
Ecologist

Global Concern is in the Air

Climate Change Debate

Mary Cleave – NASA (personal communication)

Climate Change Debate

From Intergovernmental Panel on Climate Change

Climate Change Debate

Loehle and McCulloch (2008) Energy and Environment 19:93-100

Managing Carbon Emission

- ✓ Rising concentration of greenhouse gases has been largely attributed to expanding use of fossil fuels as an energy source, resulting in emission of CO₂ to the atmosphere
- ✓ Reducing net greenhouse gas emission is possible:
 - 1. Reduce fossil fuel combustion by becoming more energy efficient
 - 2. Rely more on low-carbon energy sources
 - Solar energy capture
 - Wind power generation
 - Biomass fuels
 - 3. Carbon sequestration

Terrestrial Carbon Sequestration

Management Approaches to Sequester Soil Carbon from Atmosphere to Biosphere

Focus on maximizing carbon input

Plant selection

- Species, cultivar, variety
- Growth habit (perennial / annual)
- Rotation sequence
- Biomass energy crops

Tillage

- Type
- Frequency

Fertilization

- Rate, timing, placement
- Organic amendments

Integrated management

- Pest control
- Crop / livestock systems

Management Approaches to Sequester Soil Carbon from Atmosphere to Biosphere

Focus on minimizing carbon loss from soil

- Reducing soil disturbance
 - Less intensive tillage
 - Controlling erosion
- Utilizing available soil water
 - Promotes optimum plant growth
 - Reduces soil microbial activity
- Maintaining surface residue cover
 - Increased plant water use and production
 - More fungal dominance in soil

Sequestration of soil organic C

Management Practices to Sequester Carbon and Counter Land Degradation

- ✓ Tree plantings
- ✓ Conservation-tillage cropping
- ✓ Animal manure application
- ✓ Improved grassland management
- ✓ Optimal fertilization

Tree Plantings

Data from Georgia Forestry Commission (www.gacarbon.org/downloads.aspx)

Tree Plantings

Coarse-root biomass is 20% of total above ground biomass

Markewitz (2007) Georgia Carbon Sequestration Registry

Soil organic C accumulation with tree plantings was estimated at 0.12 <u>+</u> 0.11 Mg C/ha/yr

Post and Kwon (2000) Global Change Biol. 6:317-327

Minimal disturbance of the soil surface is critical in avoiding soil organic matter loss from erosion and microbial decomposition

In the USA and Canada, no-tillage cropping can sequester an average of 0.33 Mg C/ha/yr

No tillage needs high-residue producing cropping system to be effective (i.e. cover cropping, etc.)

Photos of 2 no-tillage systems in Virginia

Soil Organic Carbon Sequestration in the Southeastern USA

0.28 ± 0.44 Mg C/ha/yr (without cover cropping)

0.53 ± 0.45 Mg C/ha/yr (with cover cropping)

Some specific examples of research around Georgia

Sorghum / rye cropping CT and NT established in 1978

Years	Depth (cm)	∆SOC (NT-CT) (Mg/ha/yr)	Reference
2	15	1.81	Hu et al 1997
5	21	0.40	Groffman 1984
13	15	0.36	Beare et al 1994
13	21	0.26	Hu et al 1995
14	15	0.30	Hu et al 1997
16	21	0.28	Hendrix et al 1998

www.uga.edu/ecology/facilities/horseshoebend/hsb.html

Some specific examples of research around Georgia

Tomato cropping
CT and NT established in 1994
Evaluation at the end of 5 yr
Hairy vetch cover crop

Cover cropping	∆SOC (NT-CT) (Mg/ha/yr)	Reference
No	0.01	Sainju et al 2002
Yes	0.69	Sainju et al 2002

Some specific examples of research around Georgia

Cotton/rye – peanut/rye cropping Runoff plots established in 1999

Tillage	Soil organic C
	(0-2 cm depth)
	(g/kg)
Conventional	7.7 <u>+</u> 1.0
Strip tillage	12.4 <u>+</u> 3.4

Potter et al. (2008) J. Environ. Qual. 37:839-847

Other results from study
Water runoff (Strip Till < Conv Till)
Infiltration (Strip Till > Conv Till)

Bosch et al. (2005) Trans. ASAE 48:2137-2144

Watkinsville (USDA-ARS)

Franzluebbers and Stuedemann (2008) Soil Sci. Soc. Am. J. 72:613-625

Watkinsville (USDA-ARS)

Franzluebbers and Stuedemann (2008) Soil Sci. Soc. Am. J. 72:613-625

Regional on-farm survey

Soil Organic Carbon Sequestration (Mg ha-1 yr-1)

Modeling of regional farming systems

Abrahamson et al. (2007) J. Soil Water Conserv. 62:94-102

Animal Manure Application

Since animal manure contains 40-60% carbon, its application to land should promote soil organic C sequestration

In a 12-year experiment on bermudagrass / tall fescue, soil organic C sequestration due to poultry litter application was 0.24 ± 0.47 Mg C/ha/yr

Conversion of C in poultry litter to soil organic C was 10 <u>+</u> 19%

Note: Manure application transfers C from one land to another

Franzluebbers (2005) Soil Tillage Res. 83:120-147
Franzluebbers (unpublished data)

Improved Grassland Management

- ✓ Degradation of permanent grasslands can occur from accelerated soil erosion, compaction, drought, and salinization
- ✓ Strategies to sequester carbon in soil should improve quality of grasslands
- **✓** Strategies for restoration should include:
 - Enhancing soil cover
 - Planting species with high forage quality and vigorous regrowth potential
 - Improving soil structure to minimize water runoff and soil erosion
 - Stocking appropriately to utilize forage, but maintain cover

Improved Grassland Management

Cropland-Grazingland Rotation

✓ Opportunities exist to capture more carbon from crop and grazing systems when the two systems are integrated:

Soil

- **Utilization of ligno**cellulosic plant materials by ruminants
- Manure deposition directly on land
- Weeds can be managed with management rather than chemicals

Optimal Fertilization

Therefore, soil carbon sequestration needs to be evaluated with a system-wide approach that includes all costs and benefits

Franzluebbers (2005) Soil Tillage Res. 83:120-147

Summary and Conclusions

- ✓ Greenhouse gas concentrations in the atmosphere are increasing and the threat of global change requires our attention
 - Benefits from conservation agricultural systems can be reaped whether climate change is man-induced or not
- ✓ A diversity of conservation agricultural management practices can be employed to sequester more carbon in plants and soil
 - Syntheses of available data are needed
 - Gaps in our knowledge need to be researched
- ✓ Conservation strategies to sequester soil carbon will restore degraded land and avoid further degradation